ISSN 2435-7715

Natural History of Fishes of Japan Edited and published by the Kagoshima University Museum

ORIGINAL RESEARCH ARTICLE

https://www.museum.kagoshima-u.ac.jp/ichthy/articles.html https://www.jstage.jst.go.jp/browse/ichthy/-char/ja

高知県から得られたウツボ科魚類2種(マメウツボ・ヤミウツボ) およびそれらの表在感丘に関する新知見

山口 蓮 '• 遠藤広光 '

ICHTHY

Author & Article Info

高知大学理工学部海洋生物学研究室(高知市) RY: renlotus.0226@gmail.com (corresponding author) HE: endoh@kochi-u.ac.jp

Received06 November 2024Revised15 November 2024Accepted15 November 2024Published17 November 2024DOI10.34583/ichthy.49.0_49

Ren Yamaguchi and Hiromitsu Endo. 2024. Specimen-based records of *Gymnothorax reevesii* and *Gymnothorax monochrous* (Anguilliformes: Muraenidae) from Kochi Prefecture, Japan, with notes on their superficial neuromasts. Ichthy, Natural History of Fishes of Japan, 49: 49–60.

Abstract

A single and two specimens of two moray eel species, *Gymnothorax reevesii* (Richardson, 1845) and *G. monochrous* (Bleeker, 1856), respectively, were newly collected from Kochi Prefecture, Japan. In Japanese waters, *G. reevesii* was recorded with certainty from the East China Sea and Shimane Prefecture, most recently reported based only on photographs from Kochi Prefecture. Similarly, in Japan, although *G. monochrous* has been known from the Nansei Islands, it was reported very recently from Kochi Prefecture based only on photographs, indicating its northernmost record. Thus, the present specimens represent the first specimen-based records from Kochi Prefecture for the two species and the northernmost one for *G. monochrous* (mouth of Urado-wan Inlet, Kochi City). In addition, the distributional patterns of superficial neuromasts in the Muraenidae are reported in detail for the first time.

ウツボ科ウツボ属 Gymnothorax Bloch, 1795 は,三大洋 の熱帯から温帯にかけて広く分布し,レプトケファルス幼 生の浮遊期をもつ底生性魚類で (Nelson et al., 2016),体 が長く側扁する,背鰭始部が頭部上にある,眼が上顎の ほぼ中央にある,肛門が体のほぼ中央にある,前鼻孔が 管状である,後鼻孔縁辺が低く眼の前縁上方に位置する, 前上顎板中央に可倒歯と単列の鋤骨歯をもつ,頭部感覚 管孔が発達するなどの形質を有し (Smith, 1962; Castle and McCosker, 1986; Böhlke et al., 1999; Smith, 2012),特異的な 形質をもつ同科他属に含まれない種の集合として扱われ ており,少なくとも現在14 名義属を含む (Böhlke et al., 1989; Smith and Böhlke, 2022).

日本産ウツボ属魚類は,標準和名が未決定の Gymnothorax bacalladoi Böhlke and Barito, 1987 を含む 44 種が現 在までに記録されている (Senou et al., 2006; 波戸岡ほか, 2021;出羽ほか, 2022;日比野・伊藤, 2022;日比野・折田, 2022;本田ほか, 2024;本村, 2024).近年,高知県にお いては,ヒメウツボ Gymnothorax melatremus Schultz, 1953 (小枝, 2020)やマメウツボ Gymnothorax reevesii (Richardson, 1845) (谷岡, 2024),ヤミウツボ Gymnothorax monochrous (Bleeker, 1856) (難波, 2024) が新たに報告されたが,後 者 2 つの記録は写真のみに基づいている.

2023 年 11 月に高知県高岡郡中土佐町久礼からマメウツ ボが、2023 年 8 月に高知県安芸郡奈半利町からヤミウツ ボがそれぞれ 1 個体釣獲された.また、ヤミウツボについ ては、2008 年 10 月に高知県高知市種崎で釣獲された 1 個 体が高知大学理工学部海洋生物学研究室(BSKU)に収蔵 されていた.これら 2 種は高知県からの標本に基づく初記 録となり、またヤミウツボは分布の北限記録となるため、 ここに報告する.また、ウツボ科における表在感丘の分布 様式はこれまで詳細な報告例がないため、新たに記載を与 えるとともに、他のウナギ目魚類の知見と比較し、考察し た.

材料と方法

標本の計数・計測方法は,Böhlke (1989) にしたがった. 全長,駆幹部長,肛門前長,および尾部長の計測には鋼尺 を用いて1mm単位まで,その他の計測形質には電子ノギ スを用いて0.1mm単位まで計測した.標本の観察には双 眼実体顕微鏡を使用し,頭部感覚管孔および感丘の観察で はアニリンブルー水溶液を塗布した.計測値は全長または 頭長に対する百分率で示した.全長と頭長は,必要に応じ てそれぞれTLとHLと略記した.脊椎骨数の計数には, 軟X線写真を用いた.魚類の体表面にある感丘の名称は 複数存在し,文献により異なる場合がある.本研究では, 和名では「表在感丘」,英名では"superficial neuromast"の 術語をあて,略称はSN (複数形:SNs)とした.局所的

Fig. 1. Fresh (A) and preserved (B) specimens of *Gymnothorax reevesii* (BSKU 134797, 495 mm TL) from Kure, Nakatosa-cho, Takaoka-gun, Kochi Prefecture, Japan.

な表在感丘の集団の英名と略称は Nakae et al. (2012, 2021) および Nakae and Hasegawa (2021) にしたがい、それらの和 名については Nakae et al. (2012)の和文要旨[md(mandibular group, 下顎表在感丘群), pr (preopercular group, 前鰓蓋 表在感丘群)〕および Nakae and Hasegawa (2021)の和文要 旨 [ch (cheek group, 頬部表在感丘群), io (infraorbital group, 眼下表在感丘群), op (opercular group, 鰓蓋表在 感丘群), pd (predorsal group, 前背側表在感丘群), pio (preinfraorbital group, 前眼下表在感丘群), po (postocular group, 後眼部表在感丘群), st (supratemporal group, 上側 頭部表在感丘群), tra (trunk accessory group, 副躯幹表在 感丘群)]をそれぞれ引用した.また、一部の表在感丘群 の和名を新たに次のように定めた:lp(lip group, 下唇部 表在感丘群), pt (posttemporal group, 後側頭部表在感丘 群), rno (rostronostril group, 吻部表在感丘群). さらに, mtr (main trunk group, 主躯幹表在感丘群), ro (retroorbital group,後眼窩表在感丘群)を追加した.なお、本研究で 記載する吻部表在感丘群 (rno) は, Nakae and Hasegawa (2021)における鼻孔表在感丘群(no)と吻部表在感丘群 (ro) を統合したものに相当する. 研究機関の略号につい ては, Sabaj (2020) にしたがった.本研究で用いた標本は, 高知大学理工学部海洋生物学研究室 (BSKU), 大阪市立 自然史博物館(OMNH),および沖縄美ら島財団総合研究 所(OCF;使用標本は URM 名義)に収蔵されている.

Gymnothorax reevesii Richardson, 1845 マメウツボ (Figs. 1–4; Table 1)

標本 1個体. BSKU 134797, 495 mm TL, 高知県高岡郡

Fig. 2. Teeth on maxilla (left) and mandibles (right) in *Gym-nothorax reevesii* (BSKU 134797, 495 mm TL).

中土佐町久礼, 久礼漁協付近(33°19′25.7″N, 133°14′06.7″E), 2023年11月11日, 釣獲, 中垣内颯大.

記載 計数形質と各部位の全長または頭長に対する割 合を Table 1 に示す.体は長く,躯幹部,尾部ともに側扁 し,尾部後方では側扁の程度が強い.対鰭を欠き,背鰭は 尾鰭を介して臀鰭と連続する.体高は躯幹前部で最も大 きく,尾部にかけて緩やかに低くなる.肛門は体のほぼ中 央に位置する.頭部はやや小さい.吻は短く,丸みを帯び る.前鼻孔は管状で,吻前面に位置する.後鼻孔は,眼の 前縁直上の背側に開口し,前後方向へやや広がった楕円形 で,その縁辺がわずかに盛り上がる冠状.口は端位で,両 顎ともにほぼ湾曲せず,完全に閉じる.下顎は吻よりもや や短く,先端が丸みを帯びる.眼は正円形で,口裂中央よ りもやや前方に位置する.眼隔域は盛り上がる.鰓嚢部は やや膨らむ.体側から腹側にかけて左右それぞれ10本程

Fig. 3. Drawings of the head of *Gymnothorax reevesii* (BSKU 134797, 495 mm TL). Dorsal (A), lateral (B) and ventral (C) views. Red dots indicate head lateral-line pores. Pale blue dots indicate SNs: rno, rostronostril group; pio, preinfraorbital group; io, infraorbital group; ro; retroorbital group; ch, cheek group; pr, preopercular group; md, mandibular group; lp, lip group; po, postocular group; pt, posttemporal group; st, supratemporal group; op, opercular group; pd, predorsal group; mtr, main trunk group; tra, trunk accessory group. Scale bar = 10 mm.

の縦皺が平行して並び,最上の縦皺は鰓孔よりも高い位置 をはしる.鰓孔は眼径とほぼ同長のスリット状で,体の背 縁と腹縁のほぼ中央に開口する.背鰭は臀鰭よりも高い. 背鰭始部は眼の後縁と鰓孔を結ぶ直線の中点直上付近に位 置する.臀鰭始部は肛門の直後に位置する.

歯はすべて鋭利な犬歯状で,切縁に鋸歯をもたず,や や後方を向く(Fig. 2).歯列は両顎ともにすべて単列.前 上顎板中央に大きな歯が3本あり,すべて可倒歯.前上顎 板側方には左に4本,右に5本の歯があり,これらは後に 続く主上顎骨歯に比べて大きい.主上顎骨歯はおおむね単 列をなし,大きさが不揃いで左に13本(前から2番目は 皮下に埋没),右に14本.鋤骨歯は微細で7本.下顎歯は 大きさが不揃いで,左に17本,右に18本(前から17番 目は皮下に埋没)配列する.

頭部感覚管孔と頭部表在感丘の分布を Fig. 3 に示す. 眼上感覚管孔は1+2個(吻端に1個,前鼻孔-後鼻孔間 に2個),眼下感覚管孔は4個,下顎感覚管孔は6個,鰓 部感覚管孔は2個.表在感丘は大きく,楕円形の乳頭状 突起として視認が可能.表在感丘は15個の局所的グルー プに分けられ,左体側における各々の個数および合計は次 の通り:吻部表在感丘群(mo)は39個,前眼下表在感丘 群(pio)は5個,眼下表在感丘群(io)は6個,後眼窩

Table 1. Counts and measurements	of G	wmnothorax	reevesii.
----------------------------------	------	------------	-----------

	BSKU 134797	Muto et al. (2021) FRLM 60553, SNFR 21750 (<i>n</i> = 2)
Total length (TL; mm)	495	619.1-737.0
Counts		
Ethmoid pores	1	1
Supraorbital pores	2	2
Infraorbital pores	4	4
Mandibular pores	6	5
Branchial pores	2	_
Predoral vertebrae	3	3–4
Preanal vertebrae	49	51-52
Total vertebrae	122^{*1}	125-128
Measurements (% TL)		
Head length	12.7	14.6
Trunk length	36.2	34.6-36.0
Tail length	50.9	49.4-49.9
Predorsal length	9.0	9.3-10.0
Preanal length	49.5	49.4-50.1
Body depth at gill opening	7.8	7.5-11.7
Body depth at anus	6.3	6.6-11.1
Body width at gill opening	3.6	_
Body width at anus	4.6	_
Measurements (% HL)		
Snout length	16.4	16.4-17.3
Eye diameter	10.4	8.9–9.9
Upper-jaw length	41.5	43.0-46.6
Lower-jaw length	40.1	41.5-46.6
Interorbital width	15.1	_
Gill-opening length	10.1	12.6-13.6
*1Refer to remarks of this spec	ies and Fig	g. 4.

表在感丘群 (ro) は 3 個, 頬部表在感丘群 (ch) は 11 個, 前鰓蓋表在感丘群 (pr) は 1 個, 下顎表在感丘群 (md) は 13 個, 下唇部表在感丘群 (lp) は 16 個,後眼部表在感 丘群 (po) は 6 個,上側頭部表在感丘群 (st) は 7 個,後 側頭部表在感丘群 (pt) は 2 個,鰓蓋表在感丘群 (op) は 12 個,前背側表在感丘群 (pd) は 2 個,主躯幹表在感丘 群 (mtr) は 107 個,副躯幹表在感丘群 (tra) は 10 個で, 合計 240 個.

表在感丘が配列する場合, 配列軸と楕円の長軸方向は おおむね一致する. 表在感丘は以下のように分布する: 吻 部表在感丘群(mo)は前鼻管基部を取り囲み、眼上感覚 管孔列よりもやや低い位置を後方へ向かい、後鼻孔直上へ 達する. その後, 配列方向を腹側へ転じて後鼻孔と眼の中 間まで配列する. 前眼下表在感丘群 (pio) は, 眼の前方 から第3眼下感覚管孔にかけて弧を描く.眼下表在感丘群 (io)は、眼の下方に頭尾方向で配列する、眼窩直後には 後眼窩表在感丘群(ro)があり,各々の長軸は頭尾方向で あるが、その分布に規則性はみられない、下顎表在感丘 群(md)は下顎腹側の前半にのみ散在し、これらの長軸 の方向は不規則. 下唇部表在感丘群(lp)は, 下顎先端 付近から下顎感覚管孔列よりも高い位置を後方へ向かう. 鰓嚢部前方から側頭部にかけて前鰓蓋表在感丘群(pr) と頬部表在感丘群(ch)からなる列があり、その上端から 後方へ向かう後眼部表在感丘群(po)が並ぶ. 上側頭部表 在感丘群(st)は後眼部表在感丘群(po)と直角をなし, 背側方向へ分枝し, その中間部でさらに前方へ向かう後側 頭部表在感丘群(pt)が短く分枝する. 鰓蓋表在感丘群(op) は鰓嚢部のほぼ中央を縦断する.前背側表在感丘群(pd) は背鰭始部直前に位置し、背腹方向に並ぶ. 主躯幹表在 感丘群(mtr)は、第2鰓部感覚管孔の直後から尾部末端 にかけて等間隔で配列する. 副躯幹表在感丘群(tra)は、 長軸が背腹方向で,第1鰓部感覚管孔の直前を配列の始点 とし、主躯幹表在感丘群 (mtr) より若干高い位置を尾部 に向かって縦列する. 副躯幹表在感丘群(tra)は,比較 的広い間隙をもって並び、その間隙には 6-17 個の主躯幹 表在感丘が配列する.

色彩 鮮時の色彩 (Figs. 1A, 2) — ホルマリン固定前に 撮影されたカラー写真に基づく. 体の地色は褐色であるが, 躯幹部前半,背鰭および臀鰭は黄色みを帯びて明るい. 体 には眼径よりも大きい 3 列ほどの円形または楕円形の暗褐 色斑が並び, 躯幹部の腹側では不明瞭.背鰭と臀鰭にも暗 褐色斑があり,背鰭では大小 2 列,臀鰭では 1 列.背鰭の 大きな暗褐色斑は,背鰭鰭条に沿うように後方へ傾斜する. 背鰭縁辺は微小な暗褐色斑が連結しつつ並び,黒く縁取ら れる.臀鰭の暗褐色斑は背鰭のものよりやや小さく,密に 並び臀鰭縁辺を黒く縁取る. 尾鰭では地色よりも暗褐色斑 が大部分を占める.背鰭始部以降の地色の領域には,不定

Fig. 4. X-ray photograph of the tail of *Gymnothorax reevesii* (BSKU 134797, 495 mm TL). The 110th and 116th vertebrae show deformity.

形な小黒斑が密に分布し、トラバーチン模様を呈する.後 鼻孔とすべての頭部感覚管孔の縁辺は橙色.虹彩は金色. 口腔内は両顎とも桃色の地色に暗褐色の色素胞が密に分布 する.

固定後の色彩(Fig. 1B) —70% エタノール液浸標本に 基づく. 躯幹部前半,背鰭および臀鰭の地色は褪色して褐 色を帯びた灰色. 躯幹部後半から尾部にかけてはやや赤み を帯びる. 体の暗褐色斑はわずかに褪色する. 後鼻孔とす べての頭部感覚管孔の縁辺および虹彩は白色. 口腔内は暗 褐色の色素胞がわずかに褪色し,それ以外の領域は白色.

分布日本,台湾,広東省沿岸,海南島,西沙諸島, インドネシア,およびサモア諸島 (Wass, 1984; Chen et al., 1994; Smith, 2012; 波戸岡, 2013; Fricke et al., 2014; Hibino, 2018).日本国内では島根県,高知県,および東シナ海(日 比野・折田, 2022;谷岡, 2024;本研究).

備考 本標本は、歯がすべて鋭利な犬歯状である、体 側にはほぼ3列の暗褐色斑が多数ある、躯幹部前半が黄色 みを帯びる、背鰭始部が眼と鰓孔とほぼ等距離に位置す る、吻が短く丸みを帯びる、口が完全に閉じる、背鰭に2 列の暗褐色斑がある、不対鰭が黒く縁取られることなどが Richardson (1845), Chen et al. (1994), Chen and Loh (2007), および日比野・折田 (2022)の示した識別形質に、さらに 計数形質と各部位の全長または頭長に対する割合が武藤ほ か (2021)が示した数値におおむね一致したため、本種に 同定された.

本種の脊椎骨は、125–128 個 (Chen et al., 1994; Chen and Loh, 2007; 武藤ほか, 2021) または 124–132 個 (Smith, 2012; 波戸岡, 2013; Hibino, 2018) とされるが,本標本の 脊椎骨は 122 個であり,それらの最小値を下回る (Table 1). ただし,本標本の第 110,第 116 脊椎骨には,複数の 脊椎骨が癒合した形態的異常がある (Fig. 4) が,この異 常が各部位の全長に対する割合に与える影響は軽微と判断 した.

これまで本種の頭部感覚管孔数を記載したものは,武 藤ほか(2021)のみである.武藤ほか(2021)は本種の頭 部感覚管孔数を示したが,鰓部感覚管孔数を記載していない(Table 1).しかし,武藤ほか(2021: fig. 1)の標本写真には,不明瞭ではあるが鰓部感覚管孔が確認できる.また,本標本の下顎感覚管孔は両体側ともに6個であり,武藤ほか(2021)が示した値と一致しない.本種の感覚管孔数の変異幅については,本研究を含めても3個体と標本数が少なく,評価できない.ただし,本標本の最前の下顎感覚管孔は微小で,下顎先端に位置し(Fig. 3B),魚体に正対するか,あるいは口腔側(Fig. 2)からでなければ視認しづらいため,鰓部感覚管孔と同様に見落としの可能性もある.

本種の鋤骨歯について, Chen et al. (1994) はその形状の みを記し, Ramos-Castro et al. (2020) は記載しなかったが, いずれも図版から判明した鋤骨歯数はそれぞれ7と13で ある.一方,本標本の鋤骨歯数は7(後ろから2本は埋没 歯) であった. Ramos-Castro et al. (2020) の値が突出して 多いため、記載個体の誤同定が考えられる. 個体間におけ る変異の可能性もあるが、個体数が少なく、これについて も評価できない.いずれにせよ、本種の外観に基づく鋤 骨歯数は,埋没歯を含まない可能性がある.また,本種 の原記載 Richardson (1845) にも鋤骨歯を指す語 "vomerine teeth"があり、「明らかに大きな錐状の鋤骨歯は、同科の Muraena helena Linnaeus, 1758 を想起させる」と記述して いる.しかし、本種とM. helena は確かに同様の歯と歯列 をもつものの、鋤骨歯は決して大きくはなく (Bauchot, 1986),その位置と視認の容易さから、本種の原記載が記 述する "vomerine teeth" は実際には鋤骨歯ではなく、前上 顎板中央の歯である可能性が高い.なお,武藤ほか(2021) には、本種の歯列に関する記載と図版はあるものの、 鋤骨 歯については言及しておらず, 図版にも描かれていない.

日比野・折田(2022)は、本種のマルキーズ諸島にお ける分布の根拠となった標本(BPBM 12081, 15 標本; Randall and Earle, 2000: BPBM 12820, 2標本)のうち,少 なくとも写真を確認できた標本はすべてタピオカウツボ Gymnothorax shaoi Chen and Loh, 2007 に同定しており,同 諸島における本種の標本に基づく分布の確証は得られてい ない.したがって、本研究では本種の分布の項からマルキー ズ諸島を除外した.また、武藤ほか(2021)は、本種の奄 美大島(内田, 1928)と琉球列島(Günther, 1870)からの 分布記録について, 前者は標本が所在不明で検証できない こと、後者は産地情報の信憑性が低いことを理由に分布の 項から除外しており、本研究もこれにしたがった. そのた め、本種の日本国内における確実な分布記録は、東シナ海 と島根県(武藤ほか, 2021)および高知県(谷岡, 2024) の3地点であるが、高知県からの記録は写真(本標本とは 別の1個体)のみに基づき証拠標本を伴わない.ゆえに, 本標本は本種の日本における4例目の,太平洋側からの唯 一の標本である.

Fig. 5. Photographs of *Gymnothorax monochrous*. BSKU 96240, flesh (A) and preserved (B) (from Kifune Fishing Port, Tanezaki, Kochi City, Kochi Prefecture, Japan, 701 mm TL); BSKU 134204, flesh (C) and preserved (D) (from Nahari Port, Nahari-cho, Aki-gun, Kochi Prefecture, Japan, 946 mm TL); URM-P 869, preserved (E) (from Haneji, Okinawa-jima island, Okinawa Prefecture, Japan, 599 mm TL).

Fig. 6. Teeth on maxilla (left) and mandibles (right) in *Gymnothorax monochrous* (BSKU 134204, 946 mm TL).

Gymnothorax monochrous (Bleeker, 1856) ヤミウツボ

(Figs. 5-7; Table 2)

標本 2標本. BSKU 96240, 701 mm TL, 高知県高知 市種崎, 貴船漁港 (33°30′03.8″N, 133°33′58.1″E), 2008 年10月7日, 釣獲, 石川晃寛; BSKU 134204, 946 mm TL, 高知県安芸郡奈半利町, 奈半利港 (33°25′19.6″N, 134°01′01.7″E), 2023年8月4日, 釣獲, 中垣内颯大.

記載 計数および計測値を Table 2 に示す.体は長く, 躯幹部, 尾部ともに側扁し, 特に尾部後方では側扁の程度 が強い.対鰭を欠き,背鰭は尾鰭を介して臀鰭と連続する. 体高は躯幹前部で最も大きく、尾部にかけて緩やかに低く なる. 肛門は体のほぼ中央に位置する. 頭部はやや小さい. 吻はやや尖る. 前鼻孔は管状で, 吻前面に位置する. 後鼻 孔は, 眼の前縁直上の背側に開口し, 前後にやや広がった 楕円形で,その縁辺がやや盛り上がった冠状. 口は端位で, 両顎ともにほとんど湾曲せず、ほぼ完全に閉じる(BSKU 96240のみ閉口時に両顎間に若干の間隙がある). 下顎は 吻よりもやや短く、先端がやや尖る.眼は正円形で、口裂 中央よりもやや前方に位置する. 眼隔域は盛り上がる. 鰓 嚢部はやや膨らむ. 体側から腹側にかけて左右それぞれ 10本程の縦皺が平行して並び、最上の縦皺は鰓孔と同じ か,やや高い位置をはしる.体側全体に不定形の微小な横 皺が密に配列する.鰓孔は眼径とほぼ同長のスリット状で、 体の背縁と腹縁のほぼ中央に開口する.背鰭は臀鰭よりも 高い.背鰭始部は、眼の後縁と鰓孔を結ぶ直線の中点直上 付近に位置し、鰓孔よりも口角にやや近い、臀鰭始部は肛 門の直後に位置する.

これ以降の記載は、すべて BSKU 134204 のみに基づく (Figs. 6, 7). 歯は、すべて鋭利で切縁に鋸歯をもたず、や や後方を向く(Fig. 6). 歯列は両顎ともにすべて単列. 前 上顎板中央に大きな可倒歯が 3 本ある. 前上顎板側方に は左右それぞれ5本の歯がある.主上顎骨歯は左に11本, 右に8本(前から8番目は皮下に埋没).鋤骨歯は極めて 微細で2本.下顎歯の大きさはほぼ同大で,左に16本, 右に11本(前から11番目は皮下に埋没)配列する.

頭部感覚管孔と頭部表在感丘の分布を Fig. 7 示す. 眼上 感覚管孔は1+2個(吻端に1個,前鼻孔-後鼻孔間に2個), 眼下感覚管孔は4個,下顎感覚管孔は6個,鰓部感覚管孔 は2個. 表在感丘は大きく, 楕円形の乳頭状突起として視 認が可能. 表在感丘は 15 個の局所的グループに分けられ, 左体側における各々の個数および合計は次の通り:吻部表 在感丘群(mo)は37個,前眼下表在感丘群(pio)は5個, 眼下表在感丘群 (io) は 5 個,後眼窩表在感丘群 (ro) は 5 個, 頬部表在感丘群(ch)は9個,前鰓蓋表在感丘群(pr)は 2個,下顎表在感丘群(md)は7個,下唇部表在感丘群 (lp)は27個,後眼部表在感丘群(po)は7個,上側頭部 表在感丘群(st)は11個,後側頭部表在感丘群(pt)は5 個, 鰓蓋表在感丘群(op)は11個, 前背側表在感丘群(pd) は1個, 主躯幹表在感丘群 (mtr) は91 + n 個 (92 番目以 降は不明瞭で摩耗による損傷が考えられる. 計数不可の表 在感丘数をnとする), 副躯幹表在感丘群(tra)は15個で, 合計 238 + n 個.

表在感丘が配列する場合, 配列軸と楕円の長軸方向は おおむね一致する. 表在感丘は以下のように分布する: 吻 部表在感丘群(mo)は前鼻管基部を取り囲み、眼上感覚 管孔列よりもやや低い位置を後方へ向かって配列し、後鼻 孔直上へ達する. その後, 配列方向を腹側へ転じて後鼻 孔と眼の中間まで配列する. 前眼下表在感丘群 (pio) は, 眼の前方から第3眼下感覚管孔にかけて弧を描く.眼下表 在感丘群(io)は、眼の下方に頭尾方向で配列し、口角直 上付近に達する. 眼窩直後には後眼窩表在感丘群 (ro) が あり,各々の長軸方向を頭尾方向にしておおむね背腹方向 に配列する. 下顎表在感丘群 (md) は下顎腹側の前半に のみ少数で散在し、これらの長軸の方向は不規則. 下唇部 表在感丘群(lp)は、下顎先端付近から下顎感覚管孔列よ りも高い位置を後方へ向かう. 鰓嚢部前方から側頭部に かけて前鰓蓋表在感丘群(pr)と頬部表在感丘群(ch)か らなる感丘列があり、その上端から後方へ向かって後眼部 表在感丘群 (po) が配列する.後眼部表在感丘群 (po) と 直角をなして上側頭部表在感丘群(st)が背側方向へ分枝 し、その中間部でさらに前方へ向かって後側頭部表在感丘 群(pt)が分枝する. 鰓蓋表在感丘群(op)は, 鰓嚢部ほ ぼ中央を縦断する.前背側表在感丘群 (pd) は背鰭始部直 前に位置し,背腹方向に配列(左体側に1個,右体側に2個) する. 主躯幹表在感丘群 (mtr) は, 第2 鰓部感覚管孔の 直後から尾部末端にかけて等間隔で配列する. 副躯幹表在 感丘群 (tra) は,長軸が背腹方向で,第1 鰓部感覚管孔 の直前を配列の始点とし、主躯幹表在感丘群(mtr)より

Fig. 7. Drawings of the head of *Gymnothorax monochrous* (BSKU 134204, 946 mm TL). Dorsal (A), lateral (B) and ventral (C) views. Red dots indicate head lateral-line pores. Pale blue dots indicate SNs: rno, rostronostril group; pio, preinfraorbital group; io, infraorbital group; ro; retroorbital group; ch, cheek group; pr, preopercular group; md, mandibular group; lp, lip group; po, postocular group; pt, posttemporal group; st, supratemporal group; op, opercular group; pd, predorsal group; mtr, main trunk group; tra, trunk accessory group. Scale bar = 10 mm.

若干高い位置を尾部に向かって配列する. 副躯幹表在感丘 群(tra)は,比較的広い間隙をもって並び,その間隙に は 4–13 個の主躯幹表在感丘が配列する.

色彩 鮮時の色彩 (Figs. 5A, C, 6) — ホルマリン固定 前に撮影されたカラー写真に基づく.体,各鰭ともにおお むね褐色であるが,背側では褐色が濃くなる. 肛門より前 の腹側では,黄色みを強く帯びて淡色となる. 体側全体に 密に配列する不定形の微小な横皺の稜線にあたる部分は黄 土色,谷筋にあたる部分は黒色を呈するため,微細な網目 模様あるいは小黒斑をもつ.前鼻管の先端,後鼻孔,およ びすべての頭部感覚管孔の縁辺は黒色. 虹彩は金色. 口腔 内は白色または桃色.

固定後の色彩(Fig. 5B, D, E)—70% エタノール液浸標 本に基づく.体と各鰭ともに黄色みが褪色して暗褐色.肛 門より前の腹側と口腔内は白色.

分布 日本, 台湾, フィリピン, マーシャル諸島, マ レーシア, インドネシア (テルナテ島:タイプ産地), パ プアニューギニア, ニューカレドニア, オーストラリア西 岸およびモザンビークのインド・西太平洋とアフリカ東 部 (Böhlke and McCosker, 2001; Allen et al., 2006; Allen and Erdmann, 2012; Fricke et al., 2014; Hibino, 2019; Smith and Böhlke, 2022). 日本国内では, 高知県, 馬毛島, 奄美大 島,沖縄島,石垣島,および西表島 (Hatooka and Yoshino, 1982;波戸岡, 2013; Nakae et al., 2018;日比野, 2019;日 比野ほか, 2021; Motomura, 2023;難波, 2024;本研究).

備考 本標本および比較標本は,背鰭始部が鰓孔より も前方に位置して鰓孔よりも口角にやや近い,口が完全に 閉じる,前鼻孔が管状,眼と鰓孔の大きさがほぼ等しい, 歯列がすべて単列,歯がすべて鋭利な犬歯状で切縁に鋸歯 をもたない,体に斑紋をもたず体色が褐色であることな ど,および計数・計測値が Hatooka and Yoshino (1982)で用 いられた標準和名の基準標本(URM-P 869)とおおむね一 致したことから,本種に同定された.URM-P 869の値は 本研究で新たに計数・計測したため,Hatooka and Yoshino (1982)の示したものと若干の差異がある(Table 2).また, URM-P 869は,膨張した腹部において最大体高となるが, 消化管内には総脊椎骨数47程度の魚類が残されていた. さらに,BSKU 96240は完全には口が閉じないが,Smith (1962)は稀にそのような個体があるとしている.

前述の通り,本種の分布はインド・西太平洋を中心と するが,アフリカ東部 (Allen and Erdmann, 2012; Fricke et al., 2014) やモザンビークにおける記録 (Smith, 1962; Smith and Böhlke, 2022) は,他の海域とは長距離を隔てた 不連続なものである.これについて, Smith and Böhlke (2022)

Table 2. Counts and measurements of G	vmnothorax monochrous.
---------------------------------------	------------------------

	BSKU 96240	BSKU 134240	URM-P 869	Five specimens observed in this study OMNH-P 3025, 3026, 7345, 45406, 13533
Total length (TL; mm)	701	946	599	297–530
Counts				
Ethmoid pores	1	1	1	1
Supraorbital pores	2	2	2	2
Infraorbital pores	4	4	4	4
Mandibular pores	6	6	6	6
Branchial pores	2	2	2	2
Predoral vertebrae	3	3	3	3
Preanal vertebrae	53	53	53	52–55
Total vertebrae	136	138	136	134–139 ^{*2}
Measurements (% TL)				
Head length	11.3	12.0	12.8	$11.3 - 13.5^{*2}$
Trunk length	34.9	35.8	34.9	31.8–33.4 ^{*2}
Tail length	52.1	51.3	53.3	52.0–53.9 ^{*2}
Predorsal length	7.8	7.5	8.7	$8.5 - 9.1^{*2}$
Preanal length	46.6	44.7	46.2	$44.9 - 47.0^{*2}$
Body depth at gill opening	7.2	10.4	8.7	$5.0-6.0^{*2}$
Body depth at anus	6.0	7.9	7.2	$4.9 - 5.6^{*2}$
Body width at gill opening	3.5	4.6	5.0	$2.6 - 3.9^{*2}$
Body width at anus	4.5	6.4	5.2	$2.9 - 3.9^{*2}$
Measurements (% HL)				
Snout length	18.1	17.6	18.8	17.1–21.2
Eye diameter	9.3	7.6	9.4	9.8–11.3
Upper-jaw length	40.6	37.6	42.5	38.2-43.2
Lower-jaw length	39.5	37.2	39.1	35.9-42.4
Interorbital width	12.1	12.8	12.0	$11.3 - 14.4^{*3}$
Gill-opening length	10.1	8.9	9.7	6.1–9.1

²Broken specimen in the tail-tip was excluded (OMNH-P 13533); ^{*3}distorted specimen in the interorbital region was excluded (OMNH-P 45406).

は「本種の定義と分布は曖昧であり,西インド洋からの記録は暫定的なものと考えるべき」と補足し,本種の学名に"?"を付記したうえで,体が無地の褐色である本属の種は,再検討が必要であるとした.ただし,本種の日本初記録を報告した Hatooka and Yoshino (1982)は,記載標本(URM-P869)の形質が Bleeker (1864)と Smith (1962)がそれぞれ示したインド・西太平洋産とモザンビーク産の標本のものと一致したことを同定の根拠とした.

日本国内において,本種は高知県西南部の大月町(難波, 2024)と鹿児島県以南(Hatooka and Yoshino, 1982;波戸 岡, 2013; Nakae et al., 2018; Hibino, 2019;日比野, 2019; 日比野ほか, 2021; Motomura, 2023)から記録されているが, 大月町の記録は写真のみに基づく記録で,証拠標本を残し ていない.ゆえに,本研究の高知県産2個体は,本種の標 本に基づく初記録であり,浦戸湾産のBSKU 96240 は分布 の北限記録となる.

表在感丘

Allis (1903) は、ウツボ科魚類 *M. helena* の側線系を報告 しており、感覚管および孔に関する記載は詳細であるが、 表在感丘については視認できたごく一部を示すにとどまっ た.本研究で記載した本科魚類の表在感丘の分布様式は、 Allis (1903) を補完するかたちで支持する.

ウナギ目魚類では、ニホンウナギ Anguilla japonica Temminck and Schlegel, 1846の感丘の分布様式を Nakae et al. (2021)が報告している.本研究でウツボ科2種の表在感丘 の分布様式を観察したところ、 ニホンウナギとよく類似す る結果を得た (Figs. 3, 7). ただし、本科2種とニホンウ ナギでは、次の点で異なっていた:後眼窩表在感丘群(ro) をもつ (vs. ニホンウナギにはない); 表在感丘は, 前鰓蓋 表在感丘群 (pr) から下唇部表在感丘群 (lp) に接続して 下顎先端へ配列する(vs. 前鰓蓋表在感丘群(pr)から下 顎表在感丘群(md)に接続して下顎先端へ配列し,下唇 部表在感丘群(lp)へ折り返すかたちで接続する);前背 側表在感丘群(pd)の表在感丘は 1-2 個(vs. 背鰭始部が 比較的後方に位置し、広い領域に多数の表在感丘からなる 前背側表在感丘群 (pd) をもつ); 主躯幹表在感丘群 (mtr) をもつ (vs. 躯幹感覚管に管器感丘をもつ). また, Nakae et al. (2021: fig. 2) では、頬部表在感丘群(ch)と前鰓蓋表 在感丘群 (pr) の境界を, 表在感丘列の間隙を目印に定め ていると思われる.しかし、Nakae et al. (2021: fig. 7) では、 頬部表在感丘群(ch)における下部2つの表在感丘が前鰓 蓋表在感丘群(pr)と神経枝を共有していることから、境 界の定義に曖昧さがある.本研究では,頬部表在感丘群(ch) の一連の配列のうち、長軸方向が同じで、かつ口角よりも 腹側に位置する表在感丘を前鰓蓋表在感丘群(pr)と定め ウツボ科2種間における表在感丘の分布様式はおおむ ね同様であるが、ヤミウツボ BSKU 134204の下顎表在感 丘群(md)に含まれる表在感丘が大幅に少なかった(Fig. 7B, C). これについて、老齢化に伴う表在感丘の減少と消 失は、現在まで報告がなく、また、左体側に偏って少数な がら表在感丘が存在することから、損傷が原因と考えられ る.感丘の有毛細胞には高い再生能力が備わっており、そ の再生は数十時間で完了する(Wibowo et al., 2011; Webb, 2014).一方、ヤミウツボ BSKU 134204 では、右体側に下 顎表在感丘群(md)が一切見られず、目立った外傷もな いことから、摂餌などの際に表在感丘が根本的に破壊され るような外傷を負い、その後治癒したものと推測できる. また、標本作製時、保存時および観察時における損傷の可 能性については、容器や他個体との過度な密着や摩擦のな いよう配慮しているため考えにくい.

ウツボ科魚類の海外産種で、紅海沿岸、セーシェル、 マスカリン諸島、マダガスカル、エウロパ島、モザンビー クおよび南アフリカにかけての西インド洋に分布する Gymnothorax griseus (Lacepède, 1803) (Heemstra et al., 2004; Fricke et al., 2009, 2013, 2018; Smith, 2012; Golani and Fricke, 2018) と, フィリピン, インドネシア, グレートバリアリー フにかけてのインド・西太平洋に分布する Gymnothorax castlei Böhlke and Randall, 1999 (Kimura et al., 2003; Allen et al., 2006; Allen and Erdmann, 2012; Smith, 2012; Fricke et al., 2014)は、体に小黒点からなる特徴的な点列をもつことが 知られている.後者の G. castlei の原記載は,35 標本のタ イプシリーズに基づく (Fig. 8C). このうち, 最古のタイ プ標本は 1969 年に得られたものであった (ANSP 144443, パラタイプ, 250 mm TL, エンデバーリーフ, オーストラ リア,水深16-20m, 1969年1月5日). これの採集当初 には, G. castleiの小黒点は、レプトケファルス幼生期の 色素沈着の名残とみなされて重要視されなかった.しかし、 その後の28年間で同様の小黒点をもつ成熟個体が得られ たことから, Böhlke and Randall (1999) はこの形質を種の 標徴とし、G. griseus のもつ小黒点(Fig. 8A, B)と類似す るとした. また, 呼称は "small black spots" (小黒点) にと どめているが、"papillae"(乳頭状突起)の表現があるこ とから、この小黒点が単なる斑紋の類ではなく、立体物で あると認識していたと思われる.そして、これら2種がも つ小黒点列の配置は、本研究で記載したマメウツボとヤミ ウツボの表在感丘列の分布によく一致した.したがって、G. castlei と G. griseus のもつ小黒点には、黒色素胞をもつ表 在感丘が含まれると予想される.また, Böhlke and Randall (1999) はこれら2種の識別形質として、体側中央を縦走す る小黒点列の末端位置を示した:前者では肛門付近(vs. 後者では尾部末端). そのため、G. griseus の体側の小黒点 列の末端以降では表在感丘列も同様に途切れるのか、観察

Fig. 8. Drawings and photograph of *Gymnothorax griseus* and *Gymnothorax castlei*. (A) *G. griseus* in Lacepède (1803: pl. 19, fig. 3); (B) *G. griseus* in Fricke et al. (2018: fig. 4); *G. castlei* in Böhlke and Randall (1999: fig. 2).

が必要となる.

本研究は、ウツボ科2種の分布記録と併せて、初めて 本科魚類における表在感丘の詳細な分布様式に関する知見 を報告した.今後、他のウナギ目魚類、あるいは本科内で さらなる比較を行い、新たな知見が得られることが期待さ れる.

比較標本

ヤミウツボ (6標本): OMNH-P 3025, 342 mm TL, 沖 縄県八重山郡西表島,浦内川河口, 1991 年 8 月 4 日,たも網; OMNH-P 3026, 405 mm TL, 沖縄県八重山郡西表島, 浦 内川河口, 1991 年 8 月 5 日, たも網; OMNH-P 7345, 297 mm TL, 沖縄県八重山郡西表島, 浦内川河口, 1995 年 10 月 20 日, たも網, 波戸岡清峰; OMNH-P 13533, 530 mm TL, 鹿児島県奄美大島瀬戸内町古仁屋, 古仁屋港, 1999 年 6 月 1 日, 釣獲, 小郷一三; OMNH-P 45406, 307 mm TL, 沖縄県石垣市, 名蔵湾南東部, 2016 年 1 月 16 日, 古 谷亜矢子; URM-P 869, 599 mm TL, 沖縄県沖縄島羽地, 1978 年 10–11 月.

謝 辞

中垣内颯大氏(高知大学農林海洋科学部)には釣獲し た2個体を寄贈していただいた.松井彰子氏(大阪市立自 然史博物館),宮本 圭氏(沖縄美ら島財団総合研究所), そして熊木慧弥氏と津野義大氏(BSKU)には標本調査に, 一部の文献の入手に関しては永江栞奈氏(九州大学大学院) にそれぞれご協力いただいた.佐藤真央氏(国立科学博物 館)からは側線神経系に関して有益なご助言と資料を頂戴 した.奈良正和教授(高知大学)には,軟X線写真撮影 装置の使用許可をいただいた.Ichthy編集委員の木村祐貴 氏(大阪府立環境農林水産総合研究所)と中江雅典氏(国 立科学博物館)には,原稿に対し有益なご助言を賜った. 最後に,石川晃寛氏,井上裕太氏,幸 大二郎氏,深瀬雄 大氏らBSKU修了生と松永 翼氏,高梨佑真氏,饗場空 璃氏をはじめとする現所属のBSKU学生諸氏からは,本 研究にさまざまなご協力をいただいた.ここに記して,以 上の方々に深甚の謝意を表する.

引用文献

- Allen, G. R. and M. V. Erdmann. 2012. Reef fishes of the East Indies. Vol. 1. Tropical Reef Research, Perth. x + 424 pp.
- Allen, G. R., J. E. McCosker, N. J. Cross, D. J. Bray and D. F. Hoese. 2006. Muraenidae, pp. 243–259. In Beesley, P. L. and A. Wells (eds.) Zoological Catalogue of Australia. Vol. 35.1. Fishes: Myxini, Petromyzontida, Chondrichthyes, Sarcopterygii, Actinopterygii (in Part). ABRS and CSIRO Publishing, Collingwood.
- Allis, E. P. 1903. The lateral sensory system in the Muraenidae. Internationale Monatsschrift f
 ür Anatomie und Physiologie, 20: 125–170.
- Bauchot, M.-L. 1986. Muraenidae, pp. 537–544. In Whitehead, P. J. P., M.-L. Bauchot, J.-C. Hureau, J. Nielsen and E. Tortonese (eds.) Fishes of the North-eastern Atlantic and the Mediterranean. Vol. 2. UNESCO, Paris.
- Bleeker, P. 1864. Atlas ichthyologique des Indes Orientales Néêrlandaises: publié sous les auspices du Gouvernement Colonial Néêrlandais. Vol. 4. Frédéric Muller, Amsterdam. 132 pp. <u>URL</u>
- Böhlke, E. B. 1989. Methods and terminology, pp. 1–7. In Böhlke, E. B. (ed.) Fishes of the western North Atlantic. Part 9. Vol. 1. Orders Anguilliformes and Saccopharyngiformes. Memoirs of the Sears Foundation of Marine Research. Allen Press, Kansas.
- Böhlke, E. B. and J. E. McCosker. 2001. The moray eels of Australia and New Zealand, with the description of two new species (Anguilliformes: Muraenidae). Records of the Australian Museum, 53: 71–102. URL
- Böhlke, E. B., J. E. McCosker and J. E. Böhlke. 1989. Family Muraenidae, pp. 104–206. In Böhlke, E. B. (ed.) Fishes of the western North Atlantic. Part 9. Vol. 1. Orders Anguilliformes and Saccopharyngiformes. Memoirs of the Sears Foundation of Marine Research. Allen Press, Kansas.
- Böhlke, E. B., J. E. McCosker and D. G. Smith. 1999. Muraenidae, pp. 1643–1657. In Carpenter, K. E. and V. H. Niem (eds.) FAO species identification guide for fishery purposes. The living marine resources of the western Central Pacific. Vol. 3. Batoid fishes, chimaeras and bony fishes part 1 (Elopidae to Linophrynidae). FAO, Rome.
- Böhlke, E. B. and J. E. Randall. 1999. *Gymnothorax castlei*, a new species of Indo-Pacific moray eel (Anguilliformes: Muraenidae). Raffles Bulletin of Zoology, 47: 549–554. <u>URL</u>
- Castle, P. H. J. and J. E. McCosker. 1986. Family No. 41: Muraenidae, pp. 165–176. In Smith, M. M. and P. C. Heemstra (eds.) Smith's sea fishes. Springer, New York.
- Chen, H.-M. and K.-H. Loh. 2007. Gymnothorax shaoi, a new species of moray eel (Anguilliformes: Muraenidae) from southeastern Taiwan. Journal of Marine Science and Technology, 15: 76–81. URL
- Chen, H.-M., K.-T. Shao and C.-T. Chen. 1994. A review of the muraenid eels (family Muraenidae) from Taiwan with description of twelve new records. Zoological Studies, 33: 44–64. URL
- 出羽優凪・伊東正英・本村浩之. 2022. 鹿児島県から得られた日本 初記録のウツボ科魚類 Gymnothorax pseudoprolatus チャイロウツ ボ (新称). 魚類学雑誌, doi: 10.11369/jji.22-008 (June 2022), 69: 153-158 (Nov. 2022).

- Fricke, R., G. R. Allen, S. Andréfouët, W.-J. Chen, M. A. Hamel, P. Laboute, R. Mana, T. H. Hui and D. Uyeno. 2014. Checklist of the marine and estuarine fishes of Madang District, Papua New Guinea, western Pacific Ocean, with 820 new records. Zootaxa, 3832: 1–247.
- Fricke, R., P. Durville, G. Bernardi, P. Borsa, G. Mou-Tham and P. Chabanet. 2013. Checklist of the shore fishes of Europa Island, Mozambique Channel, southwestern Indian Ocean, including 302 new records. Stuttgarter Beiträge zur Naturkunde A, Neue Serie, 6: 247–276. URL
- Fricke, R., J. Mahafina, F. Behivoke, H. Jaonalison, M. Léopold and D. Ponton. 2018. Annotated checklist of the fishes of Madagascar, southwestern Indian Ocean, with 158 new records. Fish Taxa, 3: 1–432. URL
- Fricke, R., T. Mulochau, P. Durville, P. Chabanet, E. Tessier and Y. Letourneur. 2009. Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species. Stuttgarter Beiträge zur Naturkunde A, Neue Serie, 2: 1–168. URL
- Günther, A. 1870. Catalogue of the fishes in the British Museum. Vol. 8. Catalogue of the Physostomi, containing the families Gymnotidae, Symbranchidae, Muraenidae, Pegasidae, and of the Lophobranchii, Plectognathi, Dipnoi, Ganoidei, Chondropterygii, Cyclostomata, Leptocardii, in the Collection of the British Museum. Taylor and Francis, London. xxv + 549 pp. <u>URL</u>
- 波戸岡清峰. 2013. ウツボ科, pp. 244–261, 1786–1792. 中坊徹次(編) 日本産魚類検索 全種の同定. 第3版. 東海大学出版会, 秦野.
- 波戸岡清峰・瀬能 宏・矢野幾維・鈴木寿之. 2021. 八重山諸島西 表島から得られた日本初記録のコクハンカワウツボ(新称)とそ の生息状況. 神奈川県立博物館研究報告(自然科学), 50: 47–53. URL
- Hatooka, K. and T. Yoshino. 1982. Moray eels (Pisces, Muraenidae) in the collection of the University of the Ryukyus. Galaxea, 1: 87–109.
- Heemstra, E., P. Heemstra, M. Smale, T. Hooper and D. Pelicier. 2004. Preliminary checklist of coastal fishes from the Mauritian of Rodrigues. Journal of Natural History, 38: 3315–3344. URL
- Hibino, Y. 2018. *Gymnothorax reevesii* (Richardson, 1845), p. 19. In Kimura, S., H. Imamura, N. V. Quan and P. H. Duong (eds.) Fishes of Ha Long Bay the World Natural Heritage site in northern Vietnam. Fisheries Research Laboratory, Mie University, Shima.
- Hibino, Y. 2019. Family Muraenidae, pp. 85–103. In Koeda, K. and H.-C. Ho (eds.) Fishes of southern Taiwan. Vol. 1. National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.
- 日比野友亮. 2019. ウツボ科 Muraenidae, pp. 22–27. 本村浩之・萩 原清司・瀬能 宏・中江雅典(編)奄美群島の魚類図鑑. 南日本 新聞開発センター, 鹿児島.
- 日比野友亮・伊藤雄一. 2022. 日本初記録のウツボ科魚類 2 種 Gymnothorax mucifer タカノハウツボ (新称) と Gymnothorax niphostigma ワタユキウツボ (新称). 魚類学雑誌, doi: 10.11369/jji.22-011 (Nov. 2022), 70: 55-63 (Apr. 2023).
- 日比野友亮・宮本 圭・桜井 雄・木村清志. 2021. 琉球列島にお ける 2016 年 1 月の大寒波に伴い打ち上げられた 2 種の日本初記 録種を含む海産ウナギ目魚類. 北九州市立自然史・歴史博物館研 究報告, A 類, 自然史, 19:13–26.
- 日比野友亮・折田大志. 2022. 奄美大島から得られた標本に基づく Gymnothorax shaoi (ウナギ目ウツボ科)の日本からの確実な記録. Ichthy, Natural History of Fishes of Japan, 26: 30–33. URL
- 本田康介・瀬能 宏・和田英敏. 2024. 相模湾産魚類目録(改訂). 神奈川県立博物館研究報告(自然科学), 53:127-218. URL
- Kimura, S., T. Peristiwady and S. R. Suharti. 2003. Muraenidae, pp. 9–12. In Kimura, S. and K. Matsuura (eds.) Fishes of Bitung. Northern tip of Sulawesi, Indonesia. Ocean Research Institute, University of Tokyo, Tokyo.
- 小枝圭太. 2020. 四国沿岸から初めて記録されたヒメウツボ. Kuroshio Biosphere, 17: 70–75. <u>URL</u>
- Motomura, H. 2023. An annotated checklist of marine and freshwater fishes of Tanega-shima and Mage-shima islands in the Osumi Islands, Kagoshima, southern Japan, with 536 new records. Bulletin of the Kagoshima University Museum, 20: 1–250. URL
- 本村浩之. 2024. 日本産魚類全種目録. これまでに記録された日本 産魚類全種の現在の標準和名と学名. Online ver. 27. <u>URL</u>

- 武藤 滉・日比野友亮・星野浩一・橋本 颯. 2021. 日本海および 東シナ海から得られたマメウツボ Gymnothorax reevesii の日本にお ける確実な記録. 魚類学雑誌, doi: 10.11369/jji.21-011 (July 2021), 68: 157–162 (Nov. 2021). URL
- Nakae, M. and K. Hasegawa. 2021. The lateral line system and its innervation in the masu salmaon *Oncorhynchus masou masou* (Salmonidae). Ichthyological Research, doi: 10.1007/s10228-021-00843-0 (Oct. 2021), 69: 362–371 (July 2022).
- Nakae, M., E. Katayama, R. Asaoka, M. Hirota, K. Sasaki. 2012. Lateral line system in the triplefin *Enneapterygius etheostomus* (Perciformes: Tripterygiidae): new implications for taxonomic studies. Ichthyological Research, doi: 10.1007/s10228-012-0273-3 (Feb. 2012), 59: 268–271 (July 2012).
- Nakae, M., M. Kuroki, M. Sato and K. Sasaki. 2021. The lateral line system and its innervation in the Japanese eel *Anguilla japonica* (Teleostei: Elopomorpha: Anguillidae). Journal of Morphology, 282: 863–873.
- Nakae, M., H. Motomura, K. Hagiwara, H. Senou, K. Koeda, T. Yoshida, S. Tashiro, B. Jeong, H. Hata, Y. Fukui, K. Fujiwara, T. Yamakawa, M. Aizawa, G. Shinohara and K. Matsuura. 2018. An annotated checklist of fishes of Amami-oshima Island, the Ryukyu Islands, Japan. Memoirs of the National Museum of Nature and Science, Tokyo, 52: 205–361. URL
- 難波拓登. 2024. 高知県大月町で得られたヤミウツボ. 南予生物フィー ルドノート, 24013. URL
- Nelson, J. S., T. C. Grande and M. V. H. Wilson. 2016. Fishes of the world. 5th ed. John Wiley and Sons, Hoboken. xli + 707 pp.
- Ramos-Castro, M., H.-M. Chen and B.-S. Mao. 2020. Description of neurocranium morphology in 34 species of moray eels (Muraenidae) found in Taiwan. Zootaxa, 4810: 81–109.
- Randall, J. E. and J. L. Earle. 2000. Annotated checklist of the shore fishes of the Marquesas Islands. Occasional Papers of the Bernice Pauahi Bishop Museum of Polynesian Ethnology and Natural History, 66: 1–39. URL
- Richardson, J. 1845. Ichthyology, pp. 51–150, pls. 35–64. In Hinds, R. B. (ed.) The zoology of the voyage of H. M. S. Sulphur, under the command of Captain Sir Edward Belcher, during the years 1836–42. Smith, Elder and Co., London.
- Sabaj, M. H. 2020. Codes for natural history collections in ichthyology and herpetology. Copeia, 108: 593–669. URL
- Senou, H., K. Matsuura and G. Shinohara. 2006. Checklist of fishes in the Sagami Sea with zoogeographical comments on shallow water fishes occurring in the coasts under the influence of the Kuroshio Current. Memoirs of the National Science Museum, 41: 389–542.
- Smith, D. G. 2012. A checklist of the moray eels of the world (Teleostei: Anguilliformes: Muraenidae). Zootaxa, 3474: 1–64.
- Smith, D. G. and E. B. Böhlke. 2022. Family Muraenidae, pp. 37–79. In Heemstra, P. C., E. Heemstra, D. A. Ebert, W. Hollemen and J. E. Randall (eds.) Coastal fishes of the western Indian Ocean Vol. 2. South African Institute for Aquatic Biodiversity, Makhanda.
- Smith, J. L. B. 1962. The moray eels of the western Indian Ocean and the Red Sea. Ichthyological Bulletin, 23: 421–444.
- 谷岡 仁. 2024. 高知県香南市で撮影されたマメウツボ. 南予生物 フィールドノート, 24003. URL
- 内田恵太郎. 1928. 魚類, pp. 49–56. 鹿兒島縣教育調査會(編)行 幸記念奄美大島に於ける博物調査報告書. 鹿兒島縣教育調査會, 鹿児島.
- Wass, R. C. 1984. An annotated checklist of the fishes of Samoa. National Oceanic and Atmospheric Administration Technical Report, National Marine Fisheries Service, SSRF-781. NOAA Scientific and Technical Publications, Washington. v + 43 pp. URL
- Webb, J. F. 2014. Morphological diversity, development, and evolution of the mechanosensory lateral line system, pp. 17–72. In Coombs, S., H. Bleckmann, R. R. Fay and A. N. Popper (eds.) The lateral line system. Springer, New York.
- Wibowo, I., F. Pinto-Teixeira, C. Satou, S. Higashijima and H. López-Schier. 2011. Compartmentalized Notch signaling sustains epithelial mirror symmetry. Development, 138: 1143–1152. URL